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ABSTRACT

Natural Field Orientation (NFO) is a patented control strat-
egy for induction machines that was first proposed in 1980’s.
In recent work by R.E.Betz and G.Mirzaeva it was found
that the NFO control algorithm has a stability problem in
regeneration mode. The authors proposed an augmentation to
the basic algorithm in the form of an auxiliary feedback in
the angular velocity estimation. This augmentation resulted
in improvement of the NFO performance in regeneration,
however, limited to relatively small torque magnitudes and
slow dynamics in regeneration. It was expected that flexible
control of the auxiliary feedback gain and / or application of
a PI block in the auxiliary feedback may be beneficial for
further performance improvement of the NFO algorithm.

This paper develops a full dynamic model of the NFO
controlled system and presents results of its linearised stability
analysis. Based on the above, it proposes some more advanced
versions of the control over the parameters of the auxiliary
feedback. The paper further discusses advantages and limita-
tions of the proposed modifications of the NFO algorithm. To
support the discussion, it includes results of simulations and
experiments obtained for a test induction machine.

INTRODUCTION

Natural Field Orientation (NFO) is a patented control strat-
egy proposed in ( [1], [2]). It can be seen as a version of Stator
Flux Orientation (SFO) control where:

• calculations are performed in the reference frame aligned
with the stator flux vector (space vectors defined in this
frame will be denoted by the index “ψs”) ;

• estimation of the stator flux vector position is based on
the “voltage model”, i.e. on the back emf estimation using
the stator voltage equation as in:

esψs
= usψs

− Rsisψs
=

d|ψs|
dt

+ jωms|ψs| (1)

where esψs
is stator back emf vector; |ψs| is the magni-

tude of the stator flux vector ψ
s
; Rs is stator resistance;

ωms is angular velocity of the stator flux vector ψ
s
.

• the magnitude of the stator flux vector is not obtained
by integration but is assumed to be equal to its reference
value.

The last point can be explained as follows. Splitting the stator
voltage equation (1) into real and imaginary parts yields:

esx = usx − Rsisx =
d|ψs|
dt

= Lm
d|ims|

dt
(2)

esy = usy − Rsisy = ωms|ψs| = ωmsLm|ims| (3)

where x-axis is aligned with the vector ψ
s
and y-axis is in

quadrature to it; Lm is magnetising inductance; |ims| is the
magnitude of the stator magnetising current.

It is clear from (2) that the magnitude of the stator flux
vector can be obtained by integrating the estimated value
of esx. It is known from literature (for example, [3]) that
a number of problems are associated with such integration.
These problems include saturation, zero drift and potentially
a stability problem (a pure integrator in this case would result
in a marginally stable system).

The NFO strategy suggests to exclude the flux integrator and
to assume that |ψs| equals to its reference value |ψ∗

s |. Then
the angular velocity ωms is obtained from (3) as esy/|ψ∗

s |,
integrating which the angular position of the stator flux vector
is calculated.

This approach results not only in a simple implementation
but also in a number of other desirable properties. First of
all, NFO requires very few machine parameters (Rs and Lm

only) and, unlike other voltage model based techniques, has
very low sensitivity to the stator resistance error. The latter
problem was explored in detail in [4].

Another desirable property of NFO is its ability to implicitly
correct the frame alignment errors. While the previously intro-
duced reference frame (x, y) can be called the “true” reference
frame, i.e. that aligned with the actual ψ

s
position, we will

denote by (d, q) a reference frame aligned with the estimated
ψ

s
position. The (d, q) frame is that used by the control

algorithm, i.e. the “control” frame. The implicit correction of
frame alignment errors means that as soon as the “control”
frame deviates from the “true” frame, an implicit mechanism
present in the NFO algorithm would act to compensate for this
error and eventually to realign both frames again.

The above property was explained in detail in [5]. It was
also found that the frame alignment may become unstable
under certain conditions in regeneration. An augmentation to
the basic NFO algorithm proposed in [5], [6] improved its
performance in regeneration but did not completely fixed the
instability problem.
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Fig. 1: Block diagram of the NFO algorithm.

In this paper an attempt is made to further improve the NFO
performance with respect to its stability in regeneration and
under dynamic conditions. The paper has the following struc-
ture. Firstly, a dynamic model of the motor-drive system under
the NFO control is developed. The linearised transfer functions
of the system are then presented and discussed. Based on
this discussion, different strategies of the auxiliary feedback
implementation are suggested. Their relative advantages and
disadvantages are explained and supported by simulation and
experimental results. Finally, the conclusions are made about
the success and the limitations of the proposed augmentation
strategies.

DEVELOPMENT OF DYNAMIC MODEL

The NFO control algorithm can be explained by means of
the block diagram in Fig. 1. In Fig. 1 α, β are the axes of the
stationary reference frame and d, q are the axes of the control
frame aligned with the estimated position of the stator flux
vector. Conversion the stationary frame to the control frame
and vice versa is performed via an estimated angular position
θ̂ms of the stator flux vector, which is obtained by integrating
the estimated angular velocity ω̂ms.

The estimation of ω̂ms is based on equation (3) but uses esq

as an approximation of esy and the reference flux magnitude
ψ∗

s as an approximation of the actual flux magnitude |ψs|.
The optional augmentation to the basic algorithm shown in
Fig. 1 inside a dotted line box was proposed in [5] for
stability improvement in regeneration. With the basic and the
augmented versions of NFO one has respectively:

ω̂ms =
esq

ψ∗
s

or ω̂ms =
esq − k′esd

ψ∗
s

(4)

where esd and esq are projections of the stator back emf vector
onto the axes d and q respectively; k′ = k sign(esq) and k > 0
is a tunable gain parameter.

In this paper, the reference flux magnitude ψ∗
s = const.

It would be convenient then to normalise the actual stator

flux magnitude ψs by its reference value ψ∗
s . The reference

and the actual torque will be normalised by τ∗
0 , where τ∗

0 =
(3/2)PpLs(i∗d)

2 is the reference torque for the case when the
reference stator currents are equal, i.e. when i∗q = i∗d. The
following main variables will be used to describe the system:

• x = τ∗
em/τ∗

0 = i∗q/i∗d is the normalised reference torque
or, equally, the ratio of the reference stator currents;

• y = ψs/ψ∗
s = Lm|ims|/Lsi

∗
d is the stator flux magnitude

normalised by its reference value;
• τn = τem/τ∗

0 is the normalised actual torque;
• ωr is the mechanical angular velocity of the rotor;
• θe = θ̂ms−θms is the angular error of the control frame,

i.e. the difference between the estimated and the true
angular positions of the stator flux vector.

With reference to Fig. 1, one can assume that the predictive
current controller is very fast and ensures that iα = i∗α and
iβ = i∗β at all times. Neglecting the inverter dead time and non-
linear effects, it can be further assumed that the stator voltages
are accurately estimated based on the inverter states. From
Fig. 1 it can be seen that only two machine parameters are
used by the NFO algorithm, namely, the stator resistance Rs

and the stator inductance Ls. The effect of the parameter errors
on the system stability was previously explored in [4] and is
not included in the scope of this paper, hence the accurate
knowledge of these parametes is also assumed.

With the above assumptions the structure of Fig. 1 can be
simplified for the purposes of the analysis. Let us assume
that, due to calculation errors and disturbances, the estimated
position of the stator flux vector differs from its actual position
by a small angular error θe. Then the commanded stator
currents i∗d and i∗q will correspond to the following currents
in the “true” reference frame:

isx = i∗d cos θe − i∗q sin θe (5)

isy = i∗d sin θe + i∗q cos θe (6)
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and the stator back emfs estimated in the control frame will
differ from those defined in the true frame as per:

esd = esx cos θe + esy sin θe (7)

esq = −esx sin θe + esy cos θe (8)

For the purposes of the model development we will also use
the equations for speed and torque, as well as the rotor voltage
equation in the stator flux oriented frame, which can be found,
for example, in [3]. The full set of equations describing the
dynamic behaviour of the NFO controlled induction machine
is given below for convenience:

J
dωr

dt
= τem; τem =

3
2
PpLm|ims|isy (9)

Lm
d|ims|

dt
+

1
Tr

Lm|ims| = σLs
disx

dt
+

1
Tr

Lsisx

− σLsωslisy (10)

ωsl =
σLs

disy

dt + 1
Tr

Lsisy

Lm|ims| − Lsisx
;

dθe

dt
= ωe = ω̂ms − ωms (11)

ωms = Ppωr + ωsl; ω̂ms =
êq − k′êd

ψ∗
s

(12)

isx = i∗d cos θe − i∗q sin θe; isy = i∗d sin θe + i∗q cos θe (13)

disx

dt
= − (

i∗d sin θe + i∗q cos θe

) dθe

dt
− sin θe

di∗q
dt

(14)

disy

dt
=

(
i∗d cos θe − i∗q sin θe

) dθe

dt
+ cos θe

di∗q
dt

(15)

esd = Lm
d|ims|

dt
cos θe + ωmsLm|ims| sin θe (16)

esq = −Lm
d|ims|

dt
sin θe + ωmsLm|ims| cos θe (17)

where: J - total inertia of the machine and the load; Tr =
Lr/Rr - rotor time constant; σ = 1 − L2

m/(LsLr) - leakage
coefficient. Manipulating (9) - (17) and using “dot” notation
for the derivatives and the previously introduced normalised
variables x, y and τn, one obtains the following non-linear
equations:

ω̇r =
1
J

τn =
τ∗
0

J
y(sin θe + x cos θe) (18)

ẏ +
1
Tr

y =
1
Tr

(cos θe − x sin θe) − σθ̇e(sin θe + x cos θe)

− σẋ sin θe − σωsl(sin θe + x cos θe) (19)

θ̇e = −ẏ(sin θe + k′ cos θe)
+ (Ppωr + ωsl) (y(cos θe − k′ sin θe) − 1) (20)

where ωsl is to be substituted into (19) and (20) from:

ωsl = (21)

=
1

Tr
(sin θe + x cos θe) + σθ̇e(cos θe − x sin θe) + σẋ cos θe

y − σ(cos θe − x sin θe)

As follows from the physical nature of the variables, (18) is
the speed equation; (19) is the flux equation; and (20) is the

angular error equation of the plant. These non-linear equations
can be written in the following general form:

J

τ∗
0

ω̇r = τn = f1 (x, y, θe) (22)

ẏ = f2

(
θ̇e, ẋ, θe, x, y

)
(23)

θ̇e = ωe = f3 (ẏ, ẋ, y, x, ωr, θe) (24)

The structure of the control system resulting from expres-
sions (22)-(24) appears in Fig. 2.

A possible modification of the augmented NFO algorithm
includes using a PI block instead of the tunable gain in its
auxiliary feedback. In that case, the the angular velocity of
the control frame will be estimated as:

ω̂ms =
esq − k′esd − m′ ∫ esd dt

ψ∗
s

(25)

where k′ and m′ are, respectively, the proportional and the
integral gain that can be controlled in both signs and magni-
tudes. This version of the augmented NFO algorithm results
in that the following equation for θ̈e will be used instead of
(24):

θ̈e = f4

(
ÿ, ẍ, ẏ, ẋ, ω̇r, θ̇e, y, x, ωr, θe

)
(26)

In this case, function f4 instead of function f3 should be used
in the internal non-linear feedback block in the bottom of
Fig. 1.

RESULTS OF THE LINEARISED ANALYSIS

Two transfer functions are of interest in the following
linearised analysis, namely:

• δτn(s)/δx(s) - the transfer function from the normalised
reference torque to the normalised actual torque, or the
transfer function of the “plant”. This transfer function
determines the behaviour of the system of Fig. 2 when
the PI-controller in the speed loop is saturated and the
speed loop is open. The latter situation is typically the
case during acceleration, braking or abrupt changes in
load;

• δωr(s)/δω∗
r (s) - the transfer function from the reference

angular velocity to the actual angular velocity, or the
close loop transfer function of the system. This transfer
function determines the behaviour of the system when
the PI-controller in the speed loop is in the linear mode
of operation.

As the details of the linearised analysis itself are not the focus
of this paper, here we will only show the results (for the details
one can be referred to [7]).

A. Auxiliary feedback of the proportional type

With this version of the augmented NFO control, the
transfer function of the “plant” has the following expression:

δτn(s)
δx(s)

=
s
(
a2s

2 + a1s + a0

)
b3s3 + b2s2 + b1s + b0

(27)

where a0-a2 and b0-b3 are bulky expressions in terms of the
machine parameters and the parameters of the operation point.
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Fig. 2: Block diagram of the non-linear system under the NFO control.

Each of these expressions would take several lines, and their
full versions are omitted here for the sake of space. However,
by sequentially neglecting the relatively small terms, it is
possible to determine, with a reasonable degree of accuracy,
the dominant part of each coefficient. Such approximate ex-
pressions have been obtained and are given below:

a2 ≈ y; a1 ≈ y

(
1
Tr

+ σxPpωr + k′yPpωr

)
(28)

a0 ≈ y

Tr

(
Ppωrx − x2

y2Tr
− x2

yTr
− 1

Tr
+ k′yPpωr + k′ x

Tr

)

(29)

b3 ≈ 1; b2 ≈ 1
Tr

+ σxPpωr + k′yPpωr (30)

b1 ≈ 1
TrJ

(
Ppωrx − x2τ∗

0

y2TrJ
+ k′yPpωr + k′ xτ∗

0

TrJ

)
(31)

b0 ≈ Ppτ
∗
0

TrJ
(y − 1)

(
x2 − y

)
(32)

The following observations can be made from examining
the expressions (28)-(32):

1) Coefficients a2 and b3 are always positive;
2) Due to the presence of the k′yPpωry term, which is

positive in most cases, coefficients a1 and b2 are also
typically positive;

3) Due to the same positive term, coefficients a0 and b1

can be kept positive under any conditions by using k′

of the appropriate magnitude;
4) Within the accuracy of this approximation, coefficient

b0 is independent of the the auxiliary feedback gain k′

and can take positive or negative values depending on
the flux and torque magnitudes.

The close-loop transfer function of the system is defined as:

δωr(s)
δω∗

r (s)
=

(kps + ki)
(
a2s

2 + a1s + a0

)
(kps + ki) (a2s2 + a1s + a0) +

+Js (b3s3 + b2s2 + b1s + b0)
(33)

B. Auxiliary feedback of the PI type

For the situation when the PI block is used in the auxiliary
feedback, one can obtain the following expression of the
transfer function of the “plant”:

δτn(s)
δx(s)

=
s
(
a3s

3 + a2s
2 + a1s + a0

)
b4s4 + b3s3 + b2s2 + b1s + b0

(34)

and define the dominant parts of the coefficients a0-a2 and
b0-b3 as follows:

a3 ≈ y; a2 ≈ Ppωrk
′y2 (35)

a1 ≈ −β8y + Ppωry
x

Tr
(36)

a0 ≈ β8
1
Tr

(xθe − y) +
1
Tr

Ppω̇rx (37)

b4 ≈ 1; b3 ≈ Ppωryk′ (38)

b2 ≈ −β8 +
Ppωr

Tr
(yk′ + x) (39)

b1 ≈ −β8

Tr
; b0 ≈ − τ∗

0

TrJ
Pp y m′sinθe(x2 − y) (40)

β8 ≈ −Pp y ωrm
′ − Pp y ω̇rk

′ + xm′/Tr (41)

From examining expressions (35)-(41) one can observe that:

1) Coefficients a3 and b4 are always positive;
2) Coefficients a2 and b3 will be positive if k′ is of the

same sign as ωr;
3) The signs of a1 and b2 will depend on the sign of β8;

b2 also includes the component that should be positive
if the condition for positive a2 and b3 is met;

4) Coefficient a0 also depends on β8, however, in the
situation when the angular velocity changes, a0 will be
dominated by the positive second term;

5) Coefficient b1 depends on β8;
6) The sign of coefficient b0 depends on the relation

between the flux and torque magnitudes, the sign of the
angular error and the sign of the proportional gain m′.
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Fig. 3: Simulation results for non-augmented NFO.
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Fig. 4: Experimental results for non-augmented NFO.

The follwing is the expression for the close-loop transfer
function of the system:

δωr(s)
δω∗

r (s)
=

(
a3s

3 + a2s
2 + a1s + a0

)
(kps + ki)

(a3s3 + a2s2 + a1s + a0) (kps + ki)+

+Js (b4s4 + b3s3 + b2s2 + b1s + b0)
(42)

I. DISCUSSION OF DIFFERENT NFO OPTIONS

Several versions of the NFO control algorithm will be dis-
cussed in this section. The discussions are supported by simu-
lations and experimental results obtained for the different NFO

Fig. 5: Simulation results for augmented NFO with k = 1.

strategies under the same conditions. The machine parameters
appear in Table I. The test conditions for both simulations and
experiments were as follows: after allowing approximately 0.5
sec for fluxing, a step change of the reference speed from
zero to 100 rad/sec (2/3 of the rated speed) was applied
to the machine. After bringin it to the commanded speed, a
step change back to zero was commanded. These conditions
demonstrate performance of the algorithm in both motoring
and regeneration. The absolute value of the torque limit is set
close to the rated torque of the machine.

The simulations were done for a detailed model of the
test machine in Saber� environment. The experiments were
carried out using a 38kW IGBT based inverter connected to a
7.5kW wye connected induction machine. The test machine
was mounted on a dynamometer test bed with a DC load
machine configured as a simple Ward-Leonard system to
provide static loading capable of regeneration or motoring
operation.

A. Non-augmented NFO

We start with the discussion of the basic (non-augmented)
NFO control algorithm, which can be regarded as a special
case of the augmented NFO when the auxiliary feedback gain
k′ = 0. Substituting k′ = 0 into the expressions (28)-(32)
one can see that if x < 0 then coefficients a0 and b1 will
be typically negative, hence instability of the NFO algorithm
in regeneration. This conclusion agrees with the previously
reported in ( [5]) and ( [6]) results, and is confirmed by
simulation of Fig. 3 and experimental results of Fig. 4. The
figures show that the basic NFO algorithm is able to start the
machine and to bring it to the commanded speed, but as soon
as a negative torque is required the control is lost. At that
moment, the speed loop is open as the output of the speed PI
controller is limited by its maximum negative value.
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Fig. 6: Experimental results for augmented NFO with k = 1.

B. Augmented NFO with constant gain in the auxiliary feed-
back

When the auxiliary feedback with constant gain is applied,
the algorithm performance improves. By comparing Fig. 5 and
Fig. 6 to Fig. 3 and Fig. 4, one can see the ability of the
augmented algorithm to track the reference torque in motoring
is much better than that of the non-augmented option. When
entering regeneration, the augmented algorithm is able to
provide negative for some short period of time but then loses
control. From the previously reported results (see ( [5]) and
( [6])), the augmented NFO with k = 1 was capable to stay
stable if approximately −1/3 of the rated torque is applied in
steady state or a −1/6 of the rated torque is commanded as
a step change.

With relation to the expressions (28)-(32), the positive
term k′ωr compensates for negative (in regeneration) terms
depending on x and provides that a0 > 0 and b1 > 0, to a
certain limit of the torque values. However, the uncontrolled
coefficient b0 changes its sign during the torque reversal, hence
the rapid reduction of flux and the rapid increase of the angular
error that are observed in Fig. 5 and Fig. 6.

C. Augmented NFO with flexible gain in the auxiliary feed-
back

Though it follows from the expression (32) that the coef-
ficient b0 cannot be directly controlled to guarantee that it is
positive, an attempt can be made to keep the conditions such
that b0 > 0. On the other hand, if the instable conditions stay
only for a short time then the system may be able to quickly
re-establish its stability. These possibilities were sought for
when we tried to vary the auxiliary feedback gain. The main
limitation in this study was to retain the inherent simplicity

Fig. 7: Simulation results for augmented NFO with flexible
gain.
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Fig. 8: Experimental results for augmented NFO with flexible
gain.

of the NFO algorithm and to use only those parameters for
the auxiliary feedback control that NFO is supposed to know,
i.e. the commanded speed and torque, eds, eqs and the rotor
speed (measured or estimated).

Different strategies were tried based on the condition as to
keep the polynomial coefficients (28)-(32) positive at all times.
The best working (so far) strategy - to control the auxiliary
feedback gain according to:

k′ = sign(eq) (C − x sign(eq)) (43)

is illustrated by Fig. 7 and Fig. 8. In the simulation of Fig. 7 the
machine is successfully started, brought up to speed and then
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back to standstill, though some unstable behaviour is observed
as speed approaches zero. This unstable behaviour is much
more pronounced in the experimental plots of Fig. 8.

The author has found that when the machine is reversed,
the change of sign of the frame angular error would always
occur. It can be shown that if the control frame (d, q) is ahead
of the “true” frame (x, y), i.e. when θe > 0, then the machine
is under-magnetised and y < 1. In the opposite case, when
the control frame is behind the “true” frame, the machine is
over-magnetised and y > 1. This means that during a speed
reversal, the coefficient b0 from (32) would change its sign
and that the NFO algorithm, at least for a short period of time,
would lose the control. This is the fundamental limitation of
the discussed version of the augmented NFO control.

Another interesting observation on the behaviour of the
NFO control with the tunable gain is illustrated by simulation
plots of Fig. 11. It can be seen from Fig. 11 that after a negative
step of the angular velocity was commanded, instead of
slowing down and reversing, the machine further accelerated
in the positive direction! This agrees with some reported cases
of peculiar behaviour of the NFO-driven golf carts, which was
one of the author’s original motivations to undertake a study
into the stability issues of the NFO control algorithm.

With relation to Fig. 11, after the gain k′ changed its sign,
the angular error θe started growing and reached 90◦ at which
level it settled. In other words, the control frame (d, q) was
rotating with the 90◦ shift relative to the actual frame (x, y).
The estimated angular velocity in equation (4) was growing in
proportion to eds rather than eqs (as it normally should) and
the machine was operating in a simingly “controlled” manner
while accelerating instead of decelerating.

Similar situations were observed in experiments when trying
different versions of the flexible gain control. This peculiar
behaviour results from the “symmetry” of the angular velocity
estimation given by the expression (4) with k′ �= 0, with
relation to the eds and eqs variables, so that a possibility exists
that, if the frame angular error becomes high, they can swap
their roles.

D. Augmented NFO with the PI block in the auxiliary feed-
back

The above mentioned possibility is excluded when the PI
block is used in the auxiliary feedback, with independent
control over the signs and the magnitudes of the proportional
k′ and the integral m′ gains. The logic for such control follows
from examining the conditions (35)-(41). To have a2 > 0 and
b3 > 0 it is important that k′ has the same sign as ωr (more
precisely, the same sign as ωms). The signs of a1, a0, b2 and
b1 depend on the coefficient β8, which in its turn depends on
m′. It is required that β8 < 0.

When x and ωr are both positive (e.g. acceleration in the
positive direction) then, according to the expression (41), m′

should be positive but not high (can be even zero), otherwise
due to the (positive) third term in (41) β8 can turn positive.
When braking in the positive direction (x < 0, ωr > 0) then
m′ should be positive and high, to compensate for a (positive)

Fig. 9: Simulation results for augmented NFO with PI block.
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Fig. 10: Experimental results for augmented NFO with PI
block.

second term in (41). Similarly, when the machine rotates in
the negative direction, then a small negative (or zero) m′ value
would not prevent from acceleration and a high negative m′

would assist in braking.
A control strategy based on the above reasoning is illustrated

by Fig. 9 and Fig. 10. The k′ value is controlled in a similar
manner to the case discussed in subsection I-B. The m′ value
of the appropriate sign turns on only during regeneration. The
resulting performance of the NFO algorithm is the best so
far achieved by the author. The simulation plots of Fig. 9
and the experimental plots of Fig. 10 show that the machine
was successfully brought up to speed and then returned to
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TABLE I: Parameters of the experimental induction machine.
PARAMETER VALUE

MAGNETISING INDUCTANCE Lm 0.0961 H
LEAKAGE INDUCTANCES Lls, Llr 0.003 H
ROTOR RESISTANCE Rr 0.6Ω
STATOR RESISTANCE Rs 0.6Ω
POPLE PAIRS Pp 2

Fig. 11: Simulation of a particular situation with flexible k

standstill. Unfortunately, due to the lack of control over the
sign of b0, periods of unstable behaviour are observed in these
plots too.

CONCLUSIONS AND CONTRIBUTIONS

It can be concluded from the paper that:

• The performance of the basic NFO algorithm, as well
as of the NFO with the constant gain in the auxiliary
feedback, do not satisfy the requirements of applications
that include periods of regeneration and abrupt changes
of the torque;

• The performance of the NFO control algorithm with the
tunable gain in the auxiliary feedback could be prone to
occasionally starting in the wrong direction;

• The NFO control performance can be substantially im-
proved when applying the auxiliary feedback of the
proportional-integral type in the angular velocity estima-
tion;

• Even in the last case, the dynamic performance of the
NFO algorithm can be improved only to a certain extent
due to the fundamental limitation discussed in this paper;

• In the opinion of the authors, to overcome these limi-
tations it would be needed to include some additional
knowledge of the operation variables and the machine
parameters, which would compromise the inherent sim-
plicity of the NFO algorithm;

• The theoretical conclusions, results of simulations and
experiments presented in this paper agree with the previ-
ously reported results and provide the grounds for their
fundamental understanding.

The following are the main contributions of the paper:

• The dynamic model of the drive-motor system controlled
by the NFO algorithm has been developed.

• The results of the linearised stability analysis for the
NFO algorithm augmented by a proportional and a
proportional-and- integral type of the auxiliary feedback
have been presented.

• The stability problems of the NFO algorithm have been
identified and related to the parameters of the dynamic
model.

• Based on the above, strategies for the control of the
auxiliary feedback parameters have been suggested.

• As the result of these strategies, the performance of the
NFO algorithm, particularly, in regeneration has been
substantially improved.

• The fundamental limitations of the NFO control algo-
rithm have been explored.

• The main conclusions of the paper have been backed up
by the simulations and experimental results obtained for
the test induction machine.

Another possible approach to the remaining instability prob-
lems is the improvement of the slow speed performance of the
NFO algorithm suggested in [8].
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